Northwest Africa 4884

Anorthosite-bearing basaltic regolith breccia 42 g

Figure 1: Interior surface of NWA 4884 with fingers for scale.

Introduction

Northwest Africa 4884 was found in 2007 in northwest Africa. It is comprised of a single stone (42 g) partially covered by black fusion crust; interior slices show it to be a breccia composed of white, beige and light gray clasts in a dark gray matrix (Fig. 1).

Petrography and Mineralogy

Preliminary reports (Connolly et al., 2008) describe it as a "regolithic breccia composed of abundant angular mineral and lithic clasts in a sparse vesicular, glassy matrix. Mineral fragments include calcic plagioclase (An_{92.4-95.3}Or_{0.5-0.1}), pigeonite (Fs_{52.3}Wo_{10.5}; FeO/MnO = 65.2), augite, Ti-chromite, ilmenite (one with a tiny

baddeleyite inclusion) and silica polymorph. Lithic clasts include several types of mare basalt (a coarse-grained example is composed of olivine + zoned pigeonite + calcic plagioclase + ilmenite + troilite), granophyric intergrowths of Fe-rich augite+fayalitic olivine+silica polymorph, a coarse grained dunitic or troctolitic rock containing a large metal (associated with grain rutile and secondary ilmenite), and a large "breccia-within-breccia" clast. Mare basalt clasts and debris are predominant over highlands lithologies." clasts ($Fa_{37.0-37.7}$; FeO/MnO = 94-98) are very different from olivine in a basalt clast ($Fa_{87.9}$; FeO/MnO = 89), and augite lamella ($Fs_{31.9}Wo_{31.9}$; FeO/MnO = 60.3), pigeonite clast (Fs_{60.1}Wo_{7.0}, FeO/MnO = 71.1), and augite clasts ($Fs_{17.2}Wo_{36.9}$,

FeO/MnO = 53.3) are slightly different in composition from those in the basaltic clasts.

Chemistry

The intermediate FeO content and high Sm are consistent with this sample being a mixture of anorthositic and basaltic materials in a regolith breccia (Table 1).

Table 1	. Cnemica	ai composition of	INWA
4884			
reference	1		

4884	
reference	1
weight	181
technique	INAA
SiO ₂ %	
TiO_2	
Al_2O_3	
Cr_2O_3	
FeO	13.7
MnO	
MgO	
CaO	
Na_2O	0.365
K_2O	
P_2O_5	
S %	
sum	
Sc ppm	30.1
V	
Cr	2090
Cr Co	
Cr Co Ni	2090 161
Cr Co Ni Cu	
Cr Co Ni Cu Zn	
Cr Co Ni Cu Zn Ga	
Cr Co Ni Cu Zn Ga	
Cr Co Ni Cu Zn Ga Ge As	
Cr Co Ni Cu Zn Ga Ge As	
Cr Co Ni Cu Zn Ga Ge As Se Rb	
Cr Co Ni Cu Zn Ga Ge As Se Rb	
Cr Co Ni Cu Zn Ga Ge As Se Rb Sr	
Cr Co Ni Cu Zn Ga Ge As Se Rb Sr Y	
Cr Co Ni Cu Zn Ga Ge As Se Rb Sr	

Ru			
Rh			
Pd ppb			
Ag ppb			
Cd ppb			
In ppb			
Sn ppb			
Sb ppb			
Te ppb			
Cs ppm			
Ba			
La			
Ce			
Pr			
Nd			
Sm	3.06		
Eu	0.786		
Gd			
Tb			
Dy			
Но			
Er			
Tm			
Yb			
Lu			
Hf			
Та			
W ppb			
Re ppb			
Os ppb			
Ir ppb	3.4		
Pt ppb			
Au ppb			
Th ppm	0.93		
U ppm			
References: 1) Korotev et al. (2008).			

Radiogenic age dating

Cosmogenic isotopes and exposure ages

None yet reported.

K. Righter, Lunar Meteorite Compendium, 2008